Affiliation:
1. School of Management Engineering and Business, Hebei University of Engineering, Handan 056038, China
Abstract
Container throughput forecasting plays an important role in port capacity planning and management. Regarding the issue of container throughput of Tianjin-Hebei Port Group, considering the container throughput is an incomplete grey information system affected by various factors, the effect is often unsatisfactory by adopting a single forecasting model. Therefore, this paper studies the issue by combining fractional GM (1, 1) and BP neural network. The comparison results show that the combination model performs better than other single models separately and has a higher level of forecasting accuracy. Furthermore, the combination model is adopted to forecast the container throughput of Tianjin-Hebei Port Group from 2021 to 2025, which would be a data reference for the future development optimization for the container operation of Tianjin-Hebei Port Group.
Funder
Handan Science and Technology Research and Development Program
Reference31 articles.
1. The government information disclosure column of the department of comprehensive planning;Official Website of the Ministry of Transport of the People’s Republic of China,2021
2. Dealing with uncertainty in design of port infrastructure systems
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献