Port container throughput prediction method based on SSA-SVM

Author:

Wu Weiyuan,Ma Long,Gao Shangzhi

Abstract

To improve the prediction accuracy of the port cargo throughput and the applicability of the prediction model, and then provide data support for the port construction to meet the needs of port decision-making, take the monthly cargo throughput data of Shanghai Port from January 2009 to December 2022 as an example, use Pearson correlation analysis to screen 12 import and export impact factors. This paper improves the traditional SVM model, uses SSA (Sparrow Search Algorithm) to optimize the parameters c and g in SVM, and uses the model to predict. Compared with the model that uses the grid search algorithm to optimize the parameters of SVM, the model has a significant improvement in fitting and robustness, its predicted value is closer to the actual value, the prediction performance is better, and it can better reflect the actual state of the port.

Publisher

Darcy & Roy Press Co. Ltd.

Reference17 articles.

1. R Lyman Ott, Micheal T Longnecker. An introduction to statistical methods and data analysis [M]. Cengage Learning, 2015: 1305465520.

2. Zhou, Zhi-Hua. Machine learning [M]. Springer Nature, 2021: 978 - 981 - 15 - 1967 - 3.

3. Wang R, Tan Q. Dynamic Model of Port Throughput's Influence on Regional Economy[J]. Journal of Coastal Research, 2019, 93 (SI): 811 - 816.

4. Li Hui. Analysis and forecast of cargo throughput of the Yangtze River Trunk line based on Holt Winters Algorithm [J]. China Water Transport, 2021 (4): 29 - 32.

5. Javed Farhan, Ghim Ping Ong. Forecasting seasonal container throughput at international ports using SARIMA models [J]. Maritime Economics & Logistics, 2018, 20 (1): 131 - 148.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3