Attention Layer-Based Multidimensional Feature Extraction for Diagnosis of Lung Cancer

Author:

Bhende Manisha1ORCID,Thakare Anuradha2ORCID,Saravanan V.3ORCID,Anbazhagan K.4ORCID,Patel Hemant N.5ORCID,Kumar Ashok6ORCID

Affiliation:

1. Marathwada Mitra Mandal’s Institute of Technology, Pune, India

2. Department of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune, India

3. Dambi Dollo University, Ethiopia

4. Department of Computer Science and Engineering, Saveetha School of Engineering, SIMATS, Chennai, India

5. Computer Engineering, Sankalchand Patel College of Engineering, India

6. Department of Computer Science, Banasthali Vidyapith, Banasthali-304022 (Rajasthan), India

Abstract

At present, early lung cancer screening is mainly based on radiologists’ experience in diagnosing benign and malignant pulmonary nodules by lung CT images. On the other hand, intraoperative rapid freezing pathology needs to analyse the invasive adenocarcinoma nodules with the worst recovery in adenocarcinoma. Moreover, rapid freezing pathology has a low diagnostic accuracy for small-diameter nodules. Because of the above problems, an algorithm for diagnosing invasive adenocarcinoma nodules in ground-glass pulmonary nodules is based on CT images. According to the nodule space information and plane features, sample data of different dimensions are designed, namely, 3D space and 2D plane feature samples. The network structure is designed based on the attention mechanism and residual learning unit; 2D and 3D neural networks are along built. By fusing the feature vectors extracted from networks of different dimensions, the diagnosis results of invasive adenocarcinoma nodules are finally obtained. The algorithm was studied on 1760 ground-glass nodules with 5-20 mm diameter collected from a city chest hospital with surgical and pathological results. There were 340 nodules with invasive adenocarcinoma and 340 with noninvasive adenocarcinoma. A total of 1420 invasive nodule samples were cross-validated on this example dataset. The classification accuracy of the algorithm was 82.7%, the sensitivity was 82.9%, and the specificity was 82.6%.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3