Automatic Parking Path Planning Based on Ant Colony Optimization and the Grid Method

Author:

Han Guo Liang1ORCID

Affiliation:

1. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

Abstract

This paper analyzes the path planning problem in the automatic parking process, and studies a path planning method for automatic parking. The grid method and the ant colony optimization are combined to find the shortest path from the parking start point to the end point. The grid method is used to model the parking environment to simulate the actual parking space of automatic parking; then this paper makes some improvements to the basic ant colony optimization, finds the destination by setting the ants’ movement rules in the grid, and finds the shortest path after N iterations; since the optimal path found is a polyline, it will increase the difficulty of controlling vehicle path tracking and affect the accuracy of vehicle path tracking. The bezier curve is used to generate a smooth path suitable for vehicle walking. Finally, through matlab simulation, the obstacles in the environment are simulated, and the parking trajectory is obtained. The results show that the path planning method proposed in this paper is feasible.

Funder

Henan Province Science and Technology Research Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference22 articles.

1. Research on Path Planning of Automatic Parking System

2. Design of automatic parallel parking steering controller based on path-planning;H. Jiang;Journal of Jilin University (Engineering and Technology Edition),2011

3. Automatic parking path optimization based on Bezier curve fitting

4. Easy Path Planning and Robust Control for Automatic Parallel Parking

5. Geometric Path Planning for Automatic Parallel Parking in Tiny Spots

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3