Selecting Critical Data Flows in Android Applications for Abnormal Behavior Detection

Author:

Feng Pengbin12ORCID,Ma Jianfeng12ORCID,Sun Cong1ORCID

Affiliation:

1. School of Cyber Engineering, Xidian University, Xi’an, China

2. School of Computer Science and Technology, Xidian University, Xi’an, China

Abstract

Nowadays, mobile devices are widely used to store and process user privacy and confidential data. With the popularity of Android platform, the cases of attacks against users’ privacy-sensitive data within Android applications are on the rise. Researchers have developed sophisticated static and dynamic analysis tools to detect information leakage. These methods cannot distinguish legitimate usage of sensitive data in benign apps from the intentional sensitive data leakages in malicious apps. Recently, malicious apps have been found to treat sensitive data differently from benign apps. These differences can be used to flag malicious apps based on their abnormal data flows. In this paper, we further find that some sensitive data flows show great difference between benign apps and malware. We can use these differences to select critical data flows. These critical flows can guide the identification of malware based on the abnormal usage of sensitive data. We present SCDFLOW, a tool that automatically selects critical data flows within Android applications and takes these critical flows as feature for abnormal behavior detection. Compared with MUDFLOW, SCDFLOW increases the true positive rate of malware detection by 5.73%~9.07% on different datasets and causes an ignorable effect on memory consumption.

Funder

National High Technology Research and Development Program

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3