Abnormal User Behavior Detection for Industry Big Data Analysis

Author:

Wang Zhe1,Hu Junhua1

Affiliation:

1. School of Economics and Management, Wuchang Institute of Technology , Wuhan , Hubei , , China .

Abstract

Abstract The security of user information and the precision of user services are paramount, necessitating effective detection of abnormal user behavior in vast datasets. This study introduces the QGAN-BDE algorithm, which leverages a quantum generative adversarial network combined with a novel approach for detecting and evaluating abnormal user behavior. Through a feature matching strategy, the algorithm ensures close data alignment between the generator and discriminator. At the same time, the integration of a classical convolutional neural network within the BDE network assesses user behavior abnormalities. Setting distinct thresholds for abnormal behavior and threats enables the differentiation between normal and abnormal activities. Utilizing a dataset and financial stock log data for simulation, the proposed method achieves an AUC value of approximately 0.912 with small negative data samples. Additionally, it records generator and discriminator loss values within the ranges of [1.05,1.55] and [0.49,0.61], respectively, and demonstrates over 80% accuracy in detecting financial stock log anomalies. This method’s reliance on comprehensive big data allows for an in-depth analysis of user behavior, facilitating the timely identification and management of abnormalities.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3