Sequential Hybrid Particle Swarm Optimization and Gravitational Search Algorithm with Dependent Random Coefficients

Author:

Jiang Shanhe1ORCID,Zhang Chaolong1ORCID,Chen Shijun1ORCID

Affiliation:

1. Department of Physics and Power Engineering, Anqing Normal University, Anqing 246011, China

Abstract

Particle swarm optimization (PSO) has been proven to show good performance for solving various optimization problems. However, it tends to suffer from premature stagnation and loses exploration ability in the later evolution period when solving complex problems. This paper presents a sequential hybrid particle swarm optimization and gravitational search algorithm with dependent random coefficients called HPSO-GSA, which first incorporates the gravitational search algorithm (GSA) with the PSO by means of a sequential operating mode and then adopts three learning strategies in the hybridization process to overcome the aforementioned problem. Specifically, the particles in the HPSO-GSA enter into the PSO stage and update their velocities by adopting the dependent random coefficients strategy to enhance the exploration ability. Then, the GSA is incorporated into the PSO by using fixed iteration interval cycle or adaptive evolution stagnation cycle strategies when the swarm drops into local optimum and fails to improve their fitness. To evaluate the effectiveness and feasibility of the proposed HPSO-GSA, the simulations were conducted on benchmark test functions. The results reveal that the HPSO-GSA exhibits superior performance in terms of accuracy, reliability, and efficiency compared to PSO, GSA, and other recently developed hybrid variants.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Error Bound Particle Swarm Optimization for Analog Circuit Sizing;IEEE Access;2024

2. Boosting particle swarm optimization by backtracking search algorithm for optimization problems;Swarm and Evolutionary Computation;2023-06

3. A novel hybrid optimization algorithm: Dynamic hybrid optimization algorithm;Multimedia Tools and Applications;2023-03-01

4. Hierarchical Approaches to Solve Optimization Problems;Academic Platform Journal of Engineering and Smart Systems;2022-09-30

5. Levy Flight and Chaos Theory Based Gravitational Search Algorithm for Global Optimization;International Journal of Applied Metaheuristic Computing;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3