Application of Multimedia Semantic Extraction Method in Fast Image Enhancement Control

Author:

Gao Yuyang12ORCID,Chen Ming12ORCID,Du Shouqing12ORCID,Feng Guofu12ORCID

Affiliation:

1. College of Information, Shanghai Ocean University, Shanghai 201306, China

2. Key Laboratory of Fisheries Information, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China

Abstract

In order to solve the problem that it is difficult to effectively enhance the details of the compressed domain and maintain the overall brightness and clarity of the image when improving the image contrast in the current image enhancement method in the compressed domain, a multimedia semantic extraction method is applied in fast image enhancement control. It has been proposed that thealgorithm that synthesizes training samples according to the Retinex model converts the original low-light image from RGB (red-green-blue) space to HSI (hue saturation intensity) color space, keeps the chrominance and saturation components unchanged, and uses DCNN to enhance the luminance component; finally, it converts the HSI color space to RGB space to get the final enhanced image. The experimental results show that the performance of the model will increase with the increase of the number of convolution kernels, but the increase of the number of convolution kernels will undoubtedly increase the amount of calculation; it can also be found that when the number of network layers is 7, the PSNR of the image output by the model increases. The highest value, increasing the number of network layers, does not necessarily improve the performance of the model; with or without BN, his training method converges more easily than direct RGB image enhancement, with higher average PSNR and SSIM values. The experimental results show that, compared with the traditional Retinex enhancement algorithm and the DCT compression domain enhancement algorithm, the algorithm has better detail enhancement and color preservation effects and can better suppress the block effect.

Funder

Guangdong Province Key Field R&D Plan Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3