A Novel Intelligent Approach to Lane-Change Behavior Prediction for Intelligent and Connected Vehicles

Author:

Du Luyao1ORCID,Chen Wei1ORCID,Ji Jing2ORCID,Pei Zhonghui2ORCID,Tong Bingming1ORCID,Zheng Hongjiang34ORCID

Affiliation:

1. School of Automation, Wuhan University of Technology, Wuhan 430070, China

2. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Shanghai Engineering Technology Research Center for Intelligent and Connected Vehicle Terminals, Shanghai 200030, China

4. Shanghai PATEO Electronic Equipment Manufacturing Co., Ltd., Shanghai 200030, China

Abstract

The prediction of lane-change behavior is a challenging issue in intelligent and connected vehicles (ICVs), which can help vehicles predict in advance and change lanes safely. In this paper, a novel intelligent approach, which considering both the driving style-based lane-change environment and the driving trajectory-related parameters of the ICV and surrounding vehicles, is proposed to predict the lane-change behaviors for ICVs. By analyzing the characteristics of the lane-change behavior of the vehicle, a modified dataset for the prediction of lane-change behavior was established based on the Next-Generation Simulation (NGSIM) dataset, which is made up of real vehicle trajectories collected by camera. In the proposed approach, the hidden Markov model (HMM)-based model is designed to judge whether the current environment is suitable for lane change according to the driving environment parameters around the vehicle; then according to the driving state of the vehicle, a learning-based prediction-then-judgment model is proposed and designed to realize the prediction of the ICV’s lane-change behavior. Experiments are implemented by using the modified dataset. From the experimental results, the lane-change probability value on the target lane in the truth of the lane-change behavior calculated by the designed HMM-based model is basically above 0.5, indicating that the model can make a more accurate judgment on the surrounding lane-change environment. The proposed learning-based prediction-then-judgment model has an accuracy of 99.32% for the prediction of lane-change behavior, and the accuracy of the lane-change detection algorithm in the model is 99.56%. The experimental results show that the proposed approach has a good performance in the prediction of lane-change behavior, which could effectively assist ICVs to change lanes safely.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference34 articles.

1. State-of-the-art and technical trends of intelligent and connected vehicles;K. Q. Li;Journal of Automotive Safety and Energy,2017

2. Automatic change detection in lane-level road networks using GPS trajectories

3. Lane-change detection based on vehicle-trajectory prediction;H. Woo;IEEE Robotics and Automation Letters,2007

4. Long short‐term memory and convolutional neural network for abnormal driving behaviour recognition

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3