Particle Swarm Optimization for Positioning the Coil of Transcranial Magnetic Stimulation

Author:

Li Congsheng1,Liu Chang1,Yang Lei1,He Luyang1,Wu Tongning1ORCID

Affiliation:

1. China Academy of Information and Communications Technology, Beijing, China

Abstract

The distribution of the induced electric field (E-field) during transcranial magnetic stimulation (TMS) depends on the individual anatomical structure of the brain as well as coil positioning. Inappropriate stimulation may degrade the efficacy of TMS or even induce adverse effects. Therefore, optimizing the E-field according to individual anatomy and clinical need has become a research focus. In this paper, particle swarm optimization (PSO) was applied for the first time to the positioning of TMS coils with anatomical head models. We discuss the parameters of the PSO algorithm, which were optimized to achieve a reasonable convergence time suitable for in-time treatment planning. The optimizer improved the distribution of the induced E-field strength at the dedicated cortical region, with a mean value of 48.31% compared with that from the conventional treatment position. The optimization terminated after 4–11 iterations for 13 head models. The applicability and performance of the optimizer for a large population are discussed in terms of cortical complexity. This study could benefit not only clinics but also research on brain modulation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3