Estimating the Electrical Conductivity of Human Tissue in Radiofrequency Hyperthermia Therapy

Author:

López-Pérez Jorge IvánORCID,Bermeo Varón Leonardo AntonioORCID

Abstract

The use of mathematical models to study complex systems such as physical and biological phenomena allows understanding their behavior, specifically regarding variables and parameters that are difficult to obtain. Additionally, studying optimization techniques has made it possible to approximate the characteristics of these systems by correlating numerical simulations and experimentation. Radiofrequency hyperthermia therapy for cancer treatment is currently under consideration for future medical applications. However, some of its properties are complex to measure, which could prevent their control. This is the case of electrical conductivity, which depends on the induction frequency and the tissue characteristics. In this paper, radiofrequency hyperthermia therapy was simulated via the finite element method. Then, an estimation of the electrical conductivity involved in the treatment was performed using the particle swarm optimization method. The execution time and the difference between the estimated parameter and the exact value were evaluated and compared with those obtained using the Levenberg-Marquardt method. The results indicate a significant agreement between the estimated and exact values in three different cases. The Levenberg-Marquardt method has a difference of 0,1942% and a performance time of 22 minutes, whereas the particle swarm optimization method has a difference of 0,0967% and a performance time of 327 minutes. The latter performs better in terms of parameter value estimation, whereas the former has better computational times. These techniques may help medical doctors to prescribe treatment protocols and may open the possibility of devising control strategies for hyperthermia therapy as a cancer treatment.

Publisher

Universidad Nacional de Colombia

Subject

General Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3