Comparison of Antimicrobial Resistance Detected in Environmental and Clinical Isolates from Historical Data for the US

Author:

Hua Megan1,Huang William1,Chen Albert1,Rehmet Michael1,Jin Cade1,Huang Zuyi1ORCID

Affiliation:

1. Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA

Abstract

Antimicrobial resistance (AMR) has become an urgent public health issue, as pathogens are becoming increasingly resistant to commonly used antimicrobials. While AMR isolate data are available in the NCBI Pathogen Detection Isolates Browser (NPDIB) database, few researches have been performed to compare antimicrobial resistance detected in environmental and clinical isolates. To address this, this work conducted the first multivariate statistical analysis of antimicrobial-resistance pathogens detected in NPDIB clinical and environmental isolates for the US from 2013 to 2018. The highly occurring AMR genes and pathogens were identified for both clinical and environmental settings, and the historical profiles of those genes and pathogens were then compared for the two settings. It was found that Salmonella enterica and E. coli and Shigella were the highly occurring AMR pathogens for both settings. Additionally, the genes fosA, oqxB, ble, floR, fosA7, mcr-9.1, aadA1, aadA2, ant(2”)-Ia, aph(3”)-Ib, aph(3’)-Ia, aph(6)-Id, blaTEM-1, qacEdelta1, sul1, sul2, tet(A), and tet(B) were mostly detected for both clinical and environmental settings. Ampicillin, ceftriaxone, gentamicin, tetracycline, and cefoxitin were the antimicrobials which got the most resistance in both settings. The historical profiles of these genes, pathogens, and antimicrobials indicated that higher occurrence frequencies generally took place earlier in the environmental setting than in the clinical setting.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3