Sports Motion Recognition Using MCMR Features Based on Interclass Symbolic Distance

Author:

Wei Yu12,Jiao Libin1,Wang Shenling1,Bie Rongfang1,Chen Yinfeng3,Liu Dalian4

Affiliation:

1. College of Information Science and Technology, Beijing Normal University, Beijing 100875, China

2. Computer Teaching and Research Section, Capital University of Physical Education and Sports, Beijing 100191, China

3. Department of Computer Information and Management, Inner Mongolia University of Finance and Economics, Hohhot 010070, China

4. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Abstract

Human motion and gesture recognition receive much concern in sports field, such as physical education and fitness for all. Although plenty of mature applications appear in sports training using photography, video camera, or professional sensing devices, they are either expensive or inconvenient to carry. MEMS devices would be a wise choice for students and ordinary body builders as they are portable and have many built-in sensors. In fact, recognition of hand gestures is discussed in many studies using inertial sensors based on similarity matching. However, this kind of solution is not accurate enough for human movement recognition and cost much time. In this paper, we discuss motion recognition in sports training using features extracted from distance estimation of different kinds of sensors. To deal with the multivariate motion sequence, we propose a solution that applies Max-Correlation and Min-Redundancy strategy to select features extracted with interclass distance similarity estimation. With this method, we are able to screen out proper features that can distinguish motions in different classes effectively. According to the results of experiment in real world application in dance practice, our solution is quite effective with fair accuracy and low time cost.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3