Short-Term Power Prediction of Wind Power Generation System Based on Logistic Chaos Atom Search Optimization BP Neural Network

Author:

Zhang Yihan1,Li Peng1ORCID,Li Huixuan1,Zu Wenjing1,Zhang Hongkai1

Affiliation:

1. State Grid Henan Economic Research Institute, Zhengzhou 450000, China

Abstract

Wind power generation is the major approach to wind energy utilization. However, due to the volatility, intermittent, and controllability of wind power, it is difficult to control and scheduling of wind power, which brings challenges to the grid-connected operation and dispatch of wind power. Therefore, accurate power prediction of the wind power generation system is worthy of in-depth study. And this paper proposes a wind power prediction model based on logistic chaos atom search optimization (LCASO) optimized back-propagation (BP) neural network, aiming to achieve accurate and efficient power prediction. Moreover, this work utilizes data preprocessing to obtain more precise prediction results and related prediction evaluation indexes to quantificationally compare the effect of the proposed one with other prediction models based on GA-BP neural network and PSO-BP neural network. In contrast with the BP neural network, GA-BP neural network, and PSO-BP neural network, the simulation tests verify the comprehensive prediction performance and wider applicability of LCASO-BP neural network-based power prediction model.

Funder

State Grid Corporation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3