Study on the Applicability of Neutron Radiation Damage Method Used for High-Temperature Superconducting Tape Based on Geant4 and SRIM

Author:

Zheng Ying12,Zheng Jinxing1ORCID,Wang Xudong12

Affiliation:

1. Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China

2. University of Science and Technology of China, Hefei 230026, China

Abstract

High-temperature superconducting material is a promising candidate to fabricate superconducting magnet for magnetic confinement fusion reactors. The DPA number of the 1 µm thick superconducting layer in a high temperature superconducting tape under neutron irradiation needs to be calculated to predict the property changes. The DPA cross sections, which ignore the spatial distribution of vacancies caused by PKAs, are commonly used to obtain the results of the damage energy and DPA. However, for geometric models with the thickness as small as 1 µm, the energy and angular distribution of PKAs reveal that a significant number of PKAs with relatively high energy tend to scatter forward and cross the boundary of model, so the thickness of model has the potential to affect the number of displaced atoms. In this paper, we developed a method based on Geant4 and SRIM to evaluate the deviation of the traditional analytic method caused by the thickness. Geant4 is used to obtain the location, direction, and energy of PKAs, while SRIM is used to track every PKA and obtain damage energy and the number of displaced atoms. The radiation damage calculation of simple thin plate models with different thicknesses and the tape model are conducted with the neutron energies from 1 to 14 MeV. The results show that PKAs need to be tracked continuously for models with thickness less than 10 µm and the deviation of the analytic formulas increases rapidly with the decrease of thickness. For the superconducting layer composed of four different elements in the tape, the deviation also depends on the proportion of each atomic species and the neutron-atom interaction cross sections under different incident neutron energy.

Funder

Natural Science Foundation for Distinguished Young Scholars of Anhui Province

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3