Optimization for preparing Bi1.68Pb0.32Sr1.75Ca1.85Cu2.85O10+y powders by wet ball milling

Author:

Chen Yingwei,Shao LingORCID,Zhao Guomeng,Liu Qijie,Huang Yingqi,Liu Zhenzhong,Zhu Liu,Wang Tianle,Zheng Beibei

Abstract

Abstract Superconducting Bi1.68Pb0.32Sr1.75Ca1.85Cu2.85O10+y (Bi-2223) powders were prepared by a conventional solid-state reaction using hand grinding and wet ball milling. The effects of the ball milling and sintering times on the phase evolution were examined by x-ray diffraction and magnetic susceptibility measurements. Single-phase Bi-2223 powders with a superconducting transition temperature of about 108 K were optimally prepared by wet ball milling for 20 h and sintering at 867 °C for 80 h. Finding these optimal preparation conditions were crucial for mass producing high-quality single-phase Bi-2223 precursor powders with a much lower cost of energy. Furthermore, we found that ball milling led to thinner grains than hand grinding.

Funder

Science and Technology Plan Project of Taizhou

Zhejiang Public Welfare Technology Application Research Project

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3