On Fatigue Detection for Air Traffic Controllers Based on Fuzzy Fusion of Multiple Features

Author:

Hu Yi1ORCID,Liu Zhuo2ORCID,Hou Aiqin2ORCID,Wu Chase3ORCID,Wei Wenbin4ORCID,Wang Yanjun1ORCID,Liu Min5ORCID

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China

2. School of Information Science and Technology, Northwest University, Xi’an, Shaanxi 710127, China

3. Department of Data Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

4. Department of Aviation and Technology, San Jose State University, San Jose, CA 95192, USA

5. Zhongke Haoyin Intelligent Technology Co., Ltd., Hefei, Anhui 230088, China

Abstract

Fatigue detection for air traffic controllers is an important yet challenging problem in aviation safety research. Most of the existing methods for this problem are based on facial features. In this paper, we propose an ensemble learning model that combines both facial features and voice features and design a fatigue detection method through multifeature fusion, referred to as Facial and Voice Stacking (FV-Stacking). Specifically, for facial features, we first use OpenCV and Dlib libraries to extract mouth and eye areas and then employ a combination of M-Convolutional Neural Network (M-CNN) and E-Convolutional Neural Network (E-CNN) to determine the state of mouth and eye closure based on five features, i.e., blinking times, average blinking time, average blinking interval, Percentage of Eyelid Closure over the Pupil over Time (PERCLOS), and Frequency of Open Mouth (FOM). For voice features, we extract the Mel-Frequency Cepstral Coefficients (MFCC) features of speech. Such facial features and voice features are fused through a carefully designed stacking model for fatigue detection. Real-life experiments are conducted on 14 air traffic controllers in Southwest Air Traffic Management Bureau of Civil Aviation of China. The results show that the proposed FV-Stacking method achieves a detection accuracy of 97%, while the best accuracy achieved by a single model is 92% and the best accuracy achieved by the state-of-the-art detection methods is 88%.

Funder

Foundation for Safety and Capacity Development of Civil Aviation Administration of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3