Immobilization of Amorphous NiB Nanoparticles on Mesoporous Supports: Superior Catalysis for Controllably Hydrolyzing NaBH4 to Release H2

Author:

Liu Quanxing1,Zhang Jun1ORCID,Du Xigang1,Mi Gang1,Dong Yana1

Affiliation:

1. Chemical Engineering & Pharmaceutics School, Henan University of Science & Technology, Luoyang 471023, China

Abstract

Taking Ni(CH3COO)2 and NaBH4 as the Ni and B sources and selecting three kinds of mesoporous materials (carbon nanotube (CNTs), activated carbon (AC), and silica (SiO2)) as supports, the liquid-phase reduction-in situ deposition tactics was employed to fabricate the amorphous alloy NiB and its corresponding supported catalysts (NiB/CNTs, NiB/AC, and NiB/SiO2) with assistance of a suitable stabilizer and ultrasonic treatment. The X-ray powder diffraction, transmission electron microscopy, and inductively coupled plasma atomic emission spectrometry were used to characterize the morphology and phase composition of the products. The catalytic activity of the four products for the hydrolytic hydrogen release in NaBH4 solution under different conditions was minutely investigated. The research results indicate that the as-fabricated products belong to amorphous alloy nanoparticles with the single phase and higher purity. The satisfactory dispersion and stronger interaction between NiB and CNTs give NiB/CNTs the best thermal stability. All the four catalysts hold satisfactory catalysis, but their catalytic abilities are obviously discrepant, in the following order: NiB/CNTs > NiB/SiO2 > NiB > NiB/AC. The mean reaction turnover frequency of the NiB/CNTs catalyst at both 318 K and 298 K separately comes up to 28206 ml(H2)·min−1·g−1(NiB) and 13424 ml(H2)·min−1·g−1(NiB), with an apparent activation energy of 47.37 kJ·mol−1. The proposed synthetic strategy could be extended to the fabrication of other similar amorphous alloy catalysts, expected for extensive application prospect.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3