Rehydrogenation of Sodium Borates to Close the NaBH4-H2 Cycle: A Review

Author:

Nunes Helder X.,Silva Diogo L.ORCID,Rangel Carmen M.ORCID,Pinto Alexandra M. F. R.ORCID

Abstract

In 2007, the US Department of Energy recommended a no-go on NaBH4 hydrolysis for onboard applications; however, the concept of a NaBH4-H2-PEMFC system has the potential to become a primary source for on-demand power supply. Despite the many efforts to study this technology, most of the published papers focus on catalytic performance. Nevertheless, the development of a practical reaction system to close the NaBH4-H2 cycle remains a critical issue. Therefore, this work provides an overview of the research progress on the solutions for the by-product rehydrogenation leading to the regeneration of NaBH4 with economic potential. It is the first to compare and analyze the main types of processes to regenerate NaBH4: thermo-, mechano-, and electrochemical. Moreover, it considers the report by Demirci et al. on the main by-product of sodium borohydride hydrolysis. The published literature already reported efficient NaBH4 regeneration; however, the processes still need more improvements. Moreover, it is noteworthy that a transition to clean methods, through the years, was observed.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3