Combining Users’ Cognition Noise with Interactive Genetic Algorithms and Trapezoidal Fuzzy Numbers for Product Color Design

Author:

Yang Yan-pu1ORCID,Tian Xing1

Affiliation:

1. School of Construction Machinery, Chang’an University, Xi’an 710064, China

Abstract

Product color plays a vital role in shaping brand style and affecting users’ purchase decision. However, users’ preferences about product color design schemes may vary due to their cognition differences. Although considering users’ perception of product color has been widely performed by industrial designers, it is not effective to support this activity. In order to provide users with plentiful product color solutions as well as embody users’ preference into product design process, involving users in interactive genetic algorithms (IGAs) is an effectual way to find optimum solutions. Nevertheless, cognition difference and uncertainty among users may lead to various understanding in line with IGA progressing. To address this issue, this study presents an advanced IGA by combining users’ cognition noise which includes cognition phase, intermediate phase, and fatigue phase. Trapezoidal fuzzy numbers are employed to represent uncertainty of users’ evaluations. An algorithm is designed to find key parameters through similarity calculation between RGB value and their area proportion of two individuals and users’ judgment. The interactive product color design process is put forward with an instance by comparing with an ordinary IGA. Results show that (1) knowledge background will significantly affect users’ cognition about product colors and (2) the proposed method is helpful to improve convergence speed and evolution efficiency with convergence increasing from 67.5% to 82.5% and overall average evolutionary generations decreasing from 18.15 to 15.825. It is promising that the proposed method can help reduce users’ cognition noise, promote convergence, and improve evolution efficiency of interactive product color design.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3