Simultaneous GC-FID Quantification of Main Components of Rosmarinus officinalis L. and Lavandula dentata Essential Oils in Polymeric Nanocapsules for Antioxidant Application

Author:

Silva-Flores Perla Giovanna1,Pérez-López Luis Alejandro1,Rivas-Galindo Verónica Mayela1,Paniagua-Vega David12,Galindo-Rodríguez Sergio Arturo3ORCID,Álvarez-Román Rocío1ORCID

Affiliation:

1. Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico

2. Cátedras CONACYT-UANL, Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico

3. Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, 66455 San Nicolás de los Garza, Nuevo León, Mexico

Abstract

The essential oils (EO) of R. officinalis and L. dentata have been widely used due to their antioxidant activity. However, due to their high volatility, the loading of EO into polymeric nanocapsules (NC) represents an efficient way of retaining their effect in future topical administration. In this way, the quantitative determination of EO incorporated into NC is necessary for simultaneous monitoring of the main components of the EO during the nanoencapsulation process as well as for precise and exact dosing of the components used during the performance of in vitro and in vivo biological tests. In this study, EO were isolated by hydrodistillation in a Clevenger-type apparatus and characterized by GC-MS and GC-FID analyses. The major constituents of EO-R. officinalis were camphor (39.46%) and 1,8-cineole (14.63%), and for EO-L. dentata were 1,8-cineole (68.59%) and β-pinene (11.53%). A new analytical method based on GC-FID for quantification of free and encapsulated EO was developed and validated according to ICH. Linearity, limit of detection and quantification, and intra- and interday precision parameters were determined. The methods were linear and precise for the quantification of the main components of EO. The EO were encapsulated by nanoprecipitation and were analyzed by the GC-FID method validated for their direct quantification. The NC size was 200 nm with homogeneous size distribution. The quantification of the incorporated EO within a NC is an important step in NC characterization. In this way, an encapsulation efficiency of at least 59.03% and 41.15% of total EO-R. officinalis and EO-L. dentata, respectively, was obtained. Simple, repeatable, and reproducible methods were developed as an analytical tool for the simultaneous quantification of the main components of EO loaded in polymeric nanocapsules as well as their monitoring in biological assays.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3