A Coordinate Descent Method for Total Variation Minimization

Author:

Deng Hong1,Ren Dongwei2,Xiao Gang3,Zhang David24ORCID,Zuo Wangmeng2ORCID

Affiliation:

1. Northeast Agricultural University, Harbin 150001, China

2. Harbin Institute of Technology, Research Group for Computational Photography and Statistical Learning, School of Computer Science and Technology, Harbin 150001, China

3. No. 211 Hospital of PLA, Harbin 150001, China

4. Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract

Total variation (TV) is a well-known image model with extensive applications in various images and vision tasks, for example, denoising, deblurring, superresolution, inpainting, and compressed sensing. In this paper, we systematically study the coordinate descent (CoD) method for solving general total variation (TV) minimization problems. Based on multidirectional gradients representation, the proposed CoD method provides a unified solution for both anisotropic and isotropic TV-based denoising (CoDenoise). With sequential sweeping and small random perturbations, CoDenoise is efficient in denoising and empirically converges to optimal solution. Moreover, CoDenoise also delivers new perspective on understanding recursive weighted median filtering. By incorporating with the Augmented Lagrangian Method (ALM), CoD was further extended to TV-based image deblurring (ALMCD). The results on denoising and deblurring validate the efficiency and effectiveness of the CoD-based methods.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3