Affiliation:
1. Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100094, China
Abstract
<p style='text-indent:20px;'>Abel inversion tomography plays an important role in dynamic experiments, while most known studies are started with a single Gaussian assumption. This paper proposes a mixed Poisson-Laplace-Gaussian distribution to characterize the noise in charge-coupled-device (CCD) sensed radiographic data, and develops a multi-convex optimization model to address the reconstruction problem. The proposed model is derived by incorporating varying amplitude Gaussian approximation and expectation maximization algorithm into an infimal convolution process. To solve it numerically, variable splitting and augmented Lagrangian method are integrated into a block coordinate descent framework, in which anisotropic diffusion and additive operator splitting are employed to gain edge preserving and computation efficiency. Supplementarily, a space of functions of adaptive bounded Hessian is introduced to prove the existence and uniqueness of solution to a higher-order regularized, quadratic subproblem. Moreover, a simplified algorithm with higher order regularizer is derived for Poisson noise removal. To illustrate the performance of the proposed algorithms, numerical tests on synthesized and real digital data are performed.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献