Detection Technology of Foamed Mixture Lightweight Soil Embankment Based on Ultrasonic Wave Transmission Method

Author:

Pu Shikun1234,Hong Baoning123,Liu Xin125ORCID,Xu Fenqiang6,Shan Hao123

Affiliation:

1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China

2. Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China

3. Geotechnical Research Institute, Hohai University, Nanjing 210098, China

4. Army Engineering University of PLA, Nanjing 210007, China

5. Research Institute of Tunnel and Underground Engineering, Hohai University, Nanjing 210098, China

6. Architectural Engineering Institute, Nanjing Institute of Technology, Nanjing 211167, China

Abstract

This study attempted to establish a process that uses the ultrasonic wave transmission method to correlate the ultrasonic parameters with the material properties of Foamed Mixture Lightweight Soil (FMLS). The results were then applied for the defect detection of the FMLS embankment. First, the ultrasonic wave velocity (UPV) and amplitude (UPA) of FMLS with different mix proportions were collected continuously from 3rd day to 45th day in the curing age. The relationships between UPV versus FMLS elastic modulus, unconfined compressive strength, and density were calibrated. The variations in the ultrasonic parameters owing to the test distance and crack width were recorded. Then, the laboratory tests were reproduced through numerical simulation approach. Finally, the reliability and accuracy of the proposed detection method for FMLS were proved and validated through on-site tests. The proposed methodology, which is simple, stable, and reliable, was found to be suitable for the quality diagnosis of FMLS embankments after construction and during operation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3