Experimental Research on Foamed Mixture Lightweight Soil Mixed with Fly-Ash and Quicklime as Backfill Material behind Abutments of Expressway Bridge

Author:

Liu Xin1ORCID,Sheng Ke2,Li Zhi-long2,Gan Liang-qin2,Shan Hao2,Hong Bao-ning2

Affiliation:

1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Jiangsu Research Center for Geotechnical Engineering Technology, Institute of Tunnel and Underground Engineering, Hohai University, Nanjing, China

2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Jiangsu Research Center for Geotechnical Engineering Technology, Geotechnical Research Institute, Hohai University, Nanjing, China

Abstract

To promote the utilization of fly-ash, based on the orthogonal experiment method, wet density and unconfined compressive strength of Foamed Mixture Lightweight Soil mixed with fly-ash and quicklime (FMLSF) are studied. It is shown that the wet density and unconfined compressive strength of FMLSF increase with the increase of cement content, while decreasing with the increase of foam content. With the mixing content of fly-ash increase, the wet density and unconfined compressive strength of FMLSF increase firstly and then decrease. Scanning Electron Microscope (SEM) tests show that ball effect or microaggregate effect of fly-ash improves the wet density and unconfined compressive strength of FMLSF. With the mixing content of quicklime increase, the wet density and unconfined compressive strength of FMLSF increase firstly within a narrow range and then decrease. In addition, the primary and secondary influence order on wet density and 28-day compressive strength of FMLSF are obtained, as well as the optimal mixture combination. Finally, based on two abutments in China, behind which they are filled with FMLSF and Foamed Mixture Lightweight Soil (FMLS), the construction techniques and key points of quality control behind abutment are compared and discussed in detail, and the feasibility of utilization fly-ash as FMLSF is verified by the experimental results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of CO2-foamed lightweight grout with early strength and low density as a low-carbon material in shield synchronous grouting;Tunnelling and Underground Space Technology;2024-05

2. Geotechnical Characterization of Construction and Demolition Waste Material Blended with Sandy Soil;International Journal of Geosynthetics and Ground Engineering;2023-07-01

3. Research on Centrifugal Model Test of Bridge Abutment Backfilling;Arabian Journal for Science and Engineering;2023-06-15

4. Experimental study on foam concrete as a sub-base layer of rigid pavement;IOP Conference Series: Earth and Environmental Science;2023-06-01

5. An ultra-lightweight cellular concrete for geotechnical applications – A review;Case Studies in Construction Materials;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3