The Effect of Pulsatile Flow on bMSC-Derived Endothelial-Like Cells in a Small-Sized Artificial Vessel Made by 3-Dimensional Bioprinting

Author:

Lee Kang Woog1ORCID,Kim Dae-Hyun1,Lee Jun Hee2ORCID,Youn Young-Nam1ORCID

Affiliation:

1. Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea

2. Department of Nature-Inspired Nanoconvergence System, Korea Institute of Machinery and Materials (KIMM), Daejeon, Republic of Korea

Abstract

Replacement of small-sized vessels is still challenging. This study is aimed at investigating the possibility of small-sized artificial vessels made by 3-dimensional bioprinting and the effect of pulsatile flow on bMSC-derived endothelial-like cells. Cells were harvested from rabbit bone marrow and primary cultured with or without growth factors. Endothelial differentiation was confirmed by the Matrigel tube formation assay, Western blot, and qRT-PCR. In addition, embedment of endothelial-like cells in an artificial vessel was made by 3-dimensional bioprinting, and the pulsatile flow was performed. For pumped and nonpumped groups, qRT-PCR was performed on CD31 and VE-cadherin gene expression. Endothelial-like cells showed increased gene expression of CD31 and VE-cadherin, and tube formation is observed at each week. Endothelial-like cells grow well in a small-sized artificial vessel made by 3-dimensional bioprinting and even express higher endothelial cell markers when they undergo pulsatile flow condition. Moreover, the pulsatile flow condition gives a positive effect for cell observation not only on the sodium alginate hydrogel layer but also on the luminal surface of the artificial vessel wall. We have developed an artificial vessel, which is a mixture of cells and carriers using a 3-dimensional bioprinting method, and applied pulsatile flow using a peristaltic pump, and we also demonstrated cell growth and differentiation into endothelial cells. This study suggests guidelines regarding a small-sized artificial vessel in the field of tissue engineering.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3