Construction of the Reverse Resource Recovery System of e-Waste Based on DLRNN

Author:

Li Changru1ORCID

Affiliation:

1. School of Public Administration, Hohai University, Focheng West Road, Nanjing 211100, China

Abstract

The research on the reverse resource network of e-waste at home and abroad is still in its infancy, and most of it is only based on traditional forward logistics. Reverse resources are the process of moving goods from their typical final destination for recycling value or proper disposal. With the intensification of market competition and the strengthening of environmental protection legislation by the government, reverse resources are no longer a neglected corner in the supply chain. The DLRNN model of the e-waste reverse resource recovery system constructed in this paper can provide an important theoretical and empirical basis for the rational utilization of waste electronic products and fully tap the potential value of waste electronic products, which is of great significance to the recycling of natural resources. In this paper, a hybrid network framework DLRNN based on deep learning (DL) and cyclic neural network (RNN) is designed for problem classification. Experimental results show that the classification accuracy of this framework is improved by 2.4% on TREC and 2.5% on MSQC without additional word vector conversion tools.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference25 articles.

1. Environmental risks related to the recovery and recycling processes of waste electrical and electronic equipment (weee);A. Generowicz;Social Science Electronic Publishing,2017

2. The heat recovery technologies of mine waste heat sources

3. Recent progresses in deep learning based acoustic models;Y. Dong;IEEE/CAA Journal of Automatica Sinica,2017

4. Preparation of Carbonaceous Sulfur-impregnated Adsorbent from Rice Straw for Nickel Recovery from Nickelplating Waste Solution

5. Selection of Industrial Trade Waste Resource Recovery Technologies—A Systematic Review

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3