A strategy for predicting waste production and planning recycling paths in e-logistics based on improved EMD-LSTM

Author:

Liu Shujuan,Jin Hui,Di Yanbiao

Abstract

<abstract> <p>With the rapid development of e-commerce, express delivery has been chosen and accepted by consumers, and a large number of express packages have resulted in serious waste of resources and environmental pollution. Because of the irregularity of online goods purchases by users in real life, logistics parks are unable to accurately judge the recycling needs of various regions. In order to solve this problem, we propose an improved empirical mode decomposition (IEMD) algorithm combined with a long-short-term memory (LSTM) network to deal with the addresses and categories in logistics data, analyze the distribution of recyclable logistics waste in the logistics park service area and in the express recycling station within the logistics park, judge the value of recyclable logistics waste, optimize the best path for recycling vehicles and improve the success rate of logistics waste recycling. In order to better research and verify the IEMD-LSTM prediction model, we model and simulate the algorithm behavior of the express waste packaging recycling prediction model system, and compare it with other classification methods through specific logistics data experiments. The prediction accuracy, stability and advantages of the four algorithms are analyzed and compared, and the application reliability of the algorithm proposed in this paper to the logistics waste recycling process is verified. The application in the actual express logistics packaging recycling case shows the feasibility and effectiveness of the waste recycling scheme proposed in this paper.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3