lncRNA FGD5-AS1 Regulates Bone Marrow Stem Cell Proliferation and Apoptosis by Affecting miR-296-5p/STAT3 Axis in Steroid-Induced Osteonecrosis of the Femoral Head

Author:

Wu Yadi1ORCID,Fang Lun1ORCID,Gao Yong2ORCID,Zhao Zhiqiu1ORCID,Zhou Lu3ORCID,Zhang Gang2ORCID

Affiliation:

1. Laboratory, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai’an 271016, Shandong Province, China

2. Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, Shandong Province, China

3. Institute of Sports Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai’an 271016, Shandong Province, China

Abstract

Background. Osteonecrosis of the femoral head (ONFH) is a common hip joint disease, which is more harmful and seriously affects the lives of patients. This study aims to clarify the regulatory mechanism of lncRNA FGD5-AS1 in ONFH. Methods. The expression of the protein and mRNA was detected by RT-qPCR and Western blot assay. The regulatory mechanism of lncRNA FGD5-AS1 was detected by the dual-luciferase reporter assay, CCK-8 assay, and flow cytometry assay. Results. Dex can inhibit cell proliferation and differentiation and induce apoptosis in hBMSCs in a dose-dependent manner. Overexpression of lncRNA FGD5-AS1 promoted cell proliferation and restrained apoptosis in Dex-treated hBMSCs. In addition, lncRNA FGD5-AS1 acts as a sponge for miR-296-5p. Also, miR-296-5p directly targets STAT3. More importantly, miR-296-5p and STAT3 can affect the function of lncRNA FGD5-AS1 in Dex-treated hBMSCs. Conclusion. lncRNA FGD5-AS1 promotes cell proliferation and inhibits apoptosis in steroid-induced ONFH through acting as a sponge for miR-296-5p and upregulation of STAT3.

Funder

Health Commission of Shandong Province

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3