CNN-GRU-AM for Shared Bicycles Demand Forecasting

Author:

Peng Yali1ORCID,Liang Ting1,Hao Xiaojiang1ORCID,Chen Yu1,Li Shicheng1ORCID,Yi Yugen1ORCID

Affiliation:

1. School of Software, Jiangxi Normal University, Nanchang 330022, China

Abstract

The demand forecast of shared bicycles directly determines the utilization rate of vehicles and projects operation benefits. Accurate prediction based on the existing operating data can reduce unnecessary delivery. Since the use of shared bicycles is susceptible to time dependence and external factors, most of the existing works only consider some of the attributes of shared bicycles, resulting in insufficient modeling and unsatisfactory prediction performance. In order to address the aforementioned limitations, this paper establishes a novelty prediction model based on convolutional recurrent neural network with the attention mechanism named as CNN-GRU-AM. There are four parts in the proposed CNN-GRU-AM model. First, a convolutional neural network (CNN) with two layers is used to extract local features from the multiple sources data. Second, the gated recurrent unit (GRU) is employed to capture the time-series relationships of the output data of CNN. Third, the attention mechanism (AM) is introduced to mining the potential relationships of the series features, in which different weights will be assigned to the corresponding features according to their importance. At last, a fully connected layer with three layers is added to learn features and output the prediction results. To evaluate the performance of the proposed method, we conducted massive experiments on two datasets including a real mobile bicycle data and a public shared bicycle data. The experimental results show that the prediction performance of the proposed model is better than other prediction models, indicating the significance of the social benefits.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3