Precise and Accurate Job Cycle Time Forecasting in a Wafer Fabrication Factory with a Fuzzy Data Mining Approach

Author:

Chen Toly1ORCID,Romanowski Richard1

Affiliation:

1. Department of Industrial Engineering and Systems Management, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 407, Taiwan

Abstract

Many data mining methods have been proposed to improve the precision and accuracy of job cycle time forecasts for wafer fabrication factories. This study presents a fuzzy data mining approach based on an innovative fuzzy backpropagation network (FBPN) that determines the lower and upper bounds of the job cycle time. Forecasting accuracy is also significantly improved by a combination of principal component analysis (PCA), fuzzy c-means (FCM), and FBPN. An applied case that uses data collected from a wafer fabrication factory illustrates this fuzzy data mining approach. For this applied case, the proposed methodology performs better than six existing data mining approaches.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3