Lightweight Investigation of Extended-Range Electric Vehicle Based on Collision Failure Using Numerical Simulation

Author:

Long Jiangqi12,Huang Wenhao1,Zhang Wuhu1

Affiliation:

1. College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou 325035, China

2. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China

Abstract

The total weight of Extended-Range Electric Vehicle (E-REV) is too heavy, which affects rear-end collision safety. Using numerical simulation, a lightweight method is designed to reduce E-REV body and key parts weight based on rear-end collision failure analysis. To calculate and optimize the performance of vehicle safety, the simulation model of E-REV rear-end collision safety is built by using finite element analysis. Drive battery pack lightweight design method is analyzed and the bending mode and torsional mode of E-REV before and after lightweight are compared to evaluate E-REV rear-end collision safety performance. The simulation results of optimized E-REV safety structure are verified by both numerical simulation and experimental investigation of the entire vehicle crash test.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3