MRFDCNet: Multireceptive Field Dense Connection Network for Real-Time Semantic Segmentation

Author:

Wang Xiaotian12,Cao Weiqun12ORCID

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

Abstract

Semantic segmentation is widely used in automatic driving systems. To quickly and accurately classify objects in emergency situations, a large number of images need to be processed per second. To make a semantic segmentation model run on hardware with low memory and limited computing capacity, this paper proposes a real-time semantic segmentation network called MRFDCNet. This architecture is based on our proposed multireceptive field dense connection (MRFDC) module. The module uses one depthwise separable convolution branch and two depthwise dilated separable convolution branches with a proposed symmetric sequence of dilation rates to obtain local and contextual information under multiple receptive fields. In addition, we utilize a dense connection to allow local and contextual information to complement each other. We design a guided attention (GA) module to effectively utilize deep and shallow features. The GA module uses high-level semantic context to guide low-level spatial details and fuse both types of feature representations. MRFDCNet has only 1.07 M parameters, and it can achieve 72.8% mIoU on the Cityscapes test set with 74 FPS on one NVIDIA GeForce GTX 1080 Ti GPU. Experiments on the Cityscapes and CamVid test sets show that MRFDCNet achieves a balance between accuracy and inference speed. Code is available at https://github.com/Wsky1836/MRFDCNet.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3