Application of Grey Deformation Prediction Model Optimized by Double Coefficient for Tailings Dam

Author:

Chu Cunji1ORCID,Xu Gangnian2ORCID

Affiliation:

1. China Railway No. 10 Survey and Design Institute, Jinan 250101, China

2. School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China

Abstract

As a nonuniform structure, tailings dam undergoes complex and chaotic nonlinear changes, under the joint influence of multiple dynamic or nondynamic factors. These changes make it difficult to predict the deformation of tailings dam accurately with a numerical model. To solve the problem, this paper proposes a grey deformation prediction model optimized by double coefficient (GDPM-DC). Unlike a single grey prediction model, the GDPM-DC does not mutate significantly but adapts well to specific scenarios. Besides, the model can smoothen and stabilize the original data and thus achieve accurate prediction of the deformation of tailings dam. The main results are as follows. The GDPM-DC made more accurate predictions than the traditional grey model (1, 1) (GM (1, 1)), the grey model based on logarithmic transformation (GM-LT), and the grey model optimized by weight coefficient (GM-WC). It significantly improved the overall prediction accuracy of the vertical and transverse deformations of the dam and controlled the relative error of the predicted seepage pressure to 2.79%–3.71%. Moreover, the model could forecast the trend component and random fluctuation component of seepage pressure effectively, fit the increasing trend in stages 1–3 and the decreasing trend in stages 3–9, and realize the quantitative prediction of deformation law for the operating tailings dam. The research results provide a meaningful reference for the instability analysis and safety management of tailings dam.

Funder

Shandong Jiaotong University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference37 articles.

1. Numerical analysis and geophysical monitoring for stability assessment of the Northwest tailings dam at Westwood Mine

2. Status and development for the prevention and management of tailings dam failure accidents;W. Kun;Chinese Journal of Engineering,2018

3. The risk, public liability, & economics of tailings storage facility failures;L. N. Bowker;Earthwork Act,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3