Optimal Gasoline Price Predictions: Leveraging the ANFIS Regression Model

Author:

Eliwa Entesar Hamed I.12ORCID,El Koshiry Amr Mohamed34ORCID,Abd El-Hafeez Tarek25ORCID,Omar Ahmed2ORCID

Affiliation:

1. Department of Mathematics and Statistics, College of Science, King Faisal University, P O. Box 400, Al-Ahsa 31982, Saudi Arabia

2. Department of Computer Science, Faculty of Science, Minia University, Minya, Egypt

3. Department of Curricula and Teaching Methods, College of Education, King Faisal University, P.O. Box: 400, Al-Ahsa 31982, Saudi Arabia

4. Faculty of Specific Education, Minia University, Minya, Egypt

5. Computer Science Unit, Deraya University, Minya, Egypt

Abstract

This study presents an in-depth analysis of gasoline price forecasting using the adaptive network-based fuzzy inference system (ANFIS), with an emphasis on its implications for policy-making and strategic decisions in the energy sector. The model leverages a comprehensive dataset from the U.S. Energy Information Administration, spanning over 30 years of historical price data from 1993 to 2023, along with relevant temporal features. By combining the strengths of fuzzy logic and neural networks, the ANFIS approach can effectively capture the complex, nonlinear relationships present in the data, enabling reliable price predictions. The dataset’s preprocessing involved decomposing the date into year, month, and day components to enhance the model’s input features. Our methodology entailed a systematic approach to ANFIS regression, including data preparation, model training with the inclusion of the previous week’s prices as an additional feature, and rigorous performance evaluation using MSE, RMSE, and correlation coefficients. The results indicate that incorporating previous prices significantly enhances the model’s accuracy, as reflected by improved scores and correlation metrics. The findings have significant implications for the energy sector, where stakeholders can leverage the ANFIS model’s insights for strategic decision-making. Accurate gasoline price forecasts are instrumental in devising pricing strategies, managing risks associated with price volatility, and guiding policy formulation. The model’s predictive capability enables energy companies to optimize resource allocation, plan for future investments, and maintain competitive advantage in a market influenced by fluctuating prices. Moreover, policymakers can utilize these predictions to assess the impact of energy policies on market prices and consumer behavior, ensuring that regulatory measures align with market dynamics and sustainability goals. In addition to the ANFIS model, we also employed Vector Autoregression (VAR) and Autoregressive Integrated Moving Average (ARIMA) models to validate our approach and provide a comprehensive understanding of time series forecasting within the energy sector. Notably, the ANFIS model achieves a score of 0.9970 and a robust correlation of 0.9985, demonstrating its ability to accurately forecast gasoline prices based on historical data and features. The integration of these traditional techniques with advanced ANFIS modeling offers a robust framework for accurate and reliable gasoline price prediction, which is vital for informed policy-making and strategic planning in the energy industry.

Funder

King Faisal University

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3