Improved Generalized Predictive Control for High-Speed Train Network Systems Based on EMD-AQPSO-LS-SVM Time Delay Prediction Model

Author:

Kong Xiangyu1ORCID,Zhang Tong2ORCID

Affiliation:

1. College of Electrical and Information Engineering, Dalian Jiaotong University, Dalian 116028, China

2. College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China

Abstract

Various control signals of high-speed trains (HSTs) are transmitted through the train communication network. However, the time delay generated during the transmission will cause a significant threat to the stability and safe operation of the train. To overcome the effect of time delay on the train control system, based on empirical mode decomposition (EMD) and adaptive quantum particle swarm optimization (AQPSO) algorithms, a least squares support vector machine (LS-SVM) time delay prediction model is proposed in this paper. The EMD algorithm is used to decompose the time delay sequence into several subsequences, which emphasizes the different local characteristics of the time delay sequence. By improving the calculation method about the successful value of particle iteration, an AQPSO algorithm with adaptive contraction-expansion coefficient is designed to optimize the parameters of different LS-SVM models for predicting each time delay component, which improves the prediction accuracy of network delay. Further, based on actor-critic reinforcement learning algorithm, an improved generalized predictive control method is proposed for the train network system. The actor-critic network is used to predict the future output of the system, and the recursive least squares identification algorithm with the variable forgetting factor is adopted to identify the future system model parameters. Combined with the time delay predicted accurately, the control quantity is sent in advance according to the properly arranged time series, which compensates efficiently the influence of the time delay on the control system. Simulation results show that compared with other control methods, the proposed method has better robustness and stability, which ensures the safe operation of high-speed trains under various working conditions.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference45 articles.

1. Development and reference of the TCMS on power centralized EMU abroad;B. Chen;Railway Locomotive & Car,2019

2. Non-Singular Fast Terminal Sliding Mode Control of High-Speed Train Network System Based on Improved Particle Swarm Optimization Algorithm

3. Adaptive Fault-Tolerant Sliding Mode Control for High-Speed Trains With Actuator Faults Under Strong Winds

4. A Discrete-Space Train Movement Model for a High-Speed Train under Temporary Speed Restriction

5. Research on application of improved WFQ algorithm in train network scheduling;T. X. Qin;Application Research of Computers,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3