Affiliation:
1. College of Meteorology and Oceanography, National University of Defense Technology, Changsha, Hunan Province, China
Abstract
Searching is one of the most fundamental operations in many complex systems. However, the complexity of the search process would increase dramatically in high-dimensional space. K-dimensional (KD) tree, as a classical data structure, has been widely used in high-dimensional vital data search. However, at present, common methods proposed for KD tree construction are either unstable or time-consuming. This paper proposed a new algorithm to construct a balanced KD tree based on presorted results. Compared with previous similar method, the new algorithm could reduce the complexity of the construction process (excluding the presorting process) from O (KNlog2N) level to O (Nlog2N) level, where K is the number of dimensions and N is the number of data. In addition, with the help of presorted results, the performance of the new method is no longer subject to the initial conditions, which expands the application scope of KD tree.
Funder
National Key R&D Program of China
Subject
Multidisciplinary,General Computer Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献