Affiliation:
1. Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing, China
Abstract
The main challenge of Strap-down Inertial Navigation System (SINS)/Doppler velocity log (DVL) navigation system is the external measurement noise. Although the Sage–Husa adaptive Kalman filter (SHAKF) has been introduced in the integrated navigation field, the precision and stability of the SHAKF are still the tricky problems to be overcome. The primary aim of this paper is to improve the precision and stability of underwater SINS/DVL system. To attain this, a SINS/DVL tightly integrated model is established, where beam measurements are used without transforming them to 3D velocity. The proposed improved SHAKF algorithm is based on variable sliding window estimation and fading filter. The simulations and vehicle test results demonstrate the effectiveness of the proposed underwater SINS/DVL tightly integrated navigation method based on the improved SHAKF. In addition, the position accuracy of the designed method outperforms that of the SHAKF method.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献