Affiliation:
1. College of IOT Engineering, Hohai University, Changzhou 213022, China
Abstract
An adaptive global sliding mode control (AGSMC) using RBF neural network (RBFNN) is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS) gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献