An Iterative Procedure for Optimizing the Performance of the Fuzzy-Neural Job Cycle Time Estimation Approach in a Wafer Fabrication Factory

Author:

Chen Toly1ORCID,Wang Yi-Chi1

Affiliation:

1. Department of Industrial Engineering and Systems Management, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 408, Taiwan

Abstract

Estimating the cycle time of each job in a wafer fabrication factory is a critical task to every wafer manufacturer. In recent years, a number of hybrid approaches based on job classification (either preclassification or postclassification) for cycle time estimation have been proposed. However, the problem with these methods is that the input variables are not independent. In order to solve this problem, principal component analysis (PCA) is considered useful. In this study, a classifying fuzzy-neural approach, based on the combination of PCA, fuzzy c-means (FCM), and back propagation network (BPN), is proposed to estimate the cycle time of a job in a wafer fabrication factory. Since job classification is an important part of the proposed methodology, a new index is proposed to assess the validity of the classification of jobs. The empirical relationship between theSvalue and the estimation performance is also found. Finally, an iterative process is employed to deal with the outliers and to optimize the overall estimation performance. A real case is used to evaluate the effectiveness of the proposed methodology. Based on the experimental results, the estimation accuracy of the proposed methodology was significantly better than those of the existing approaches.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Wafer Processing Cycle Prediction Model Based on DPC-Relief-F;2022 IEEE 18th International Conference on Automation Science and Engineering (CASE);2022-08-20

2. Feature Selection for Waiting Time Predictions in Semiconductor Wafer Fabs;IEEE Transactions on Semiconductor Manufacturing;2022-08

3. Artificial intelligence-based method for forecasting flowtime in job shops;VINE Journal of Information and Knowledge Management Systems;2022-02-25

4. A Review of Data Mining with Big Data towards Its Applications in the Electronics Industry;Applied Sciences;2018-04-08

5. Bilateral LSTM: A Two-Dimensional Long Short-Term Memory Model With Multiply Memory Units for Short-Term Cycle Time Forecasting in Re-entrant Manufacturing Systems;IEEE Transactions on Industrial Informatics;2018-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3