Performance and Logistical Challenges of Alternative HIV-1 Virological Monitoring Options in a Clinical Setting of Harare, Zimbabwe

Author:

Ondoa Pascale1ORCID,Shamu Tinei2ORCID,Bronze Michelle3,Wellington Maureen2,Boender Tamara Sonia1,Manting Corry1,Steegen Kim3,Luethy Rudi2,Rinke de Wit Tobias1

Affiliation:

1. Amsterdam Institute for Global Health and Development (AIGHD), Department of Global Health, Academic Medical Center, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands

2. Newlands Clinic, 56 Enterprise Road, Newlands, Harare, Zimbabwe

3. Department of Molecular Medicine and Haematology, University of the Witwatersrand 7 York Road, Parktown, Johannesburg 2193, South Africa

Abstract

We evaluated a low-cost virological failure assay (VFA) on plasma and dried blood spot (DBS) specimens from HIV-1 infected patients attending an HIV clinic in Harare. The results were compared to the performance of the ultrasensitive heat-denatured p24 assay (p24). The COBAS AmpliPrep/COBAS TaqMan HIV-1 test, version 2.0, served as the gold standard. Using a cutoff of 5,000 copies/mL, the plasma VFA had a sensitivity of 94.5% and specificity of 92.7% and was largely superior to the VFA on DBS (sensitivity = 61.9%; specificity = 99.0%) or to the p24 (sensitivity = 54.3%; specificity = 82.3%) when tested on 302 HIV treated and untreated patients. However, among the 202 long-term ART-exposed patients, the sensitivity of the VFA decreased to 72.7% and to 35.7% using a threshold of 5,000 and 1,000 RNA copies/mL, respectively. We show that the VFA (either on plasma or on DBS) and the p24 are not reliable to monitor long-term treated, HIV-1 infected patients. Moreover, achieving acceptable assay sensitivity using DBS proved technically difficult in a less-experienced laboratory. Importantly, the high level of virological suppression (93%) indicated that quality care focused on treatment adherence limits virological failure even when PCR-based viral load monitoring is not available.

Funder

Dutch Aidsfonds

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3