A Real-Time Monitoring System for Cable Tension with Vibration Signals Based on an Automated Algorithm to Sieve Out Reliable Modal Frequencies

Author:

Wu Wen-Hwa1ORCID,Chen Chien-Chou1ORCID,Lin Shang-Li1ORCID,Lai Gwolong1ORCID

Affiliation:

1. Department of Civil and Construction Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan

Abstract

Cables or suspenders are the critical force-transmitting components of cable-supported bridges, and their timely tension monitoring is consequently the most important issue in the corresponding structural health monitoring. However, very few works regarding the full automation of vibration-based tension estimation have been reported in the literature. To develop a monitoring system of cable tension based on real-time vibration signals, this research first employs an efficient stochastic subspace identification (SSI) method with tailored parameter selection to continuously identify the three frequencies of adjacent modes for the cables of Mao-Luo-Hsi Bridge. More importantly, an automated sieving algorithm is delicately established to obtain the stable modal frequencies by making the best of the specific modal frequency distribution for cables. The ratios between the frequency values identified from SSI analysis are exhaustively checked to systematically extract the qualified cable frequencies and decide their corresponding mode orders. The tension is finally computed with one available cable frequency according to the priority order predetermined by the statistics of identification rate. Demonstrated by analyzing the vibration signals measured from the stay cable of Mao-Luo-Hsi Bridge in real time for two full years, the effectiveness and robustness of this real-time monitoring system have been extensively testified. The long-term success rates for the immediate determination of dependable tension are found to be perfect for 15 of the 18 investigated cables. As for the other three cables, their corresponding success rates are still higher than 99.99% with very few cases of absent or false tension values.

Funder

National Science and Technology Council of Republic of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3