Affiliation:
1. School of Software, Shanxi Agricultural University, Shanxi, China
2. Department of Computer Science at University of the West of England, Bristol BS16 1QY, UK
Abstract
Chinese herbal medicine classification is a critical task in medication distribution and intelligent medicine, as well as a significant topic in computer vision. However, the majority of contemporary mainstream techniques are semiautomatic, with low efficiency and performance. To tackle this problem, a novel Chinese herbal medicine classification approach, Mutual Triplet Attention Learning (MTAL), is proposed. The motivation of our approach is to leverage a group of student networks to learn collaboratively and teach each other about cross-dimension dependencies throughout the training process, with the goal of quickly gaining strong feature representations and improving the outcomes. The results of the experiments show that MTAL outperforms other models in terms of accuracy and computation time. MTAL, in particular, improves accuracy by over 5.5 percent while reducing calculation time by over 50 percent.
Funder
Shanxi Agricultural University Academic Recovery Research Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献