A Novel Improved YOLOv3-SC Model for Individual Pig Detection

Author:

Hao WangliORCID,Han Wenwang,Han MengORCID,Li Fuzhong

Abstract

Pork is the most widely consumed meat product in the world, and achieving accurate detection of individual pigs is of great significance for intelligent pig breeding and health monitoring. Improved pig detection has important implications for improving pork production and quality, as well as economics. However, most of the current approaches are based on manual labor, resulting in unfeasible performance. In order to improve the efficiency and effectiveness of individual pig detection, this paper describes the development of an attention module enhanced YOLOv3-SC model (YOLOv3-SPP-CBAM. SPP denotes the Spatial Pyramid Pooling module and CBAM indicates the Convolutional Block Attention Module). Specifically, leveraging the attention module, the network will extract much richer feature information, leading the improved performance. Furthermore, by integrating the SPP structured network, multi-scale feature fusion can be achieved, which makes the network more robust. On the constructed dataset of 4019 samples, the experimental results showed that the YOLOv3-SC network achieved 99.24% mAP in identifying individual pigs with a detection time of 16 ms. Compared with the other popular four models, including YOLOv1, YOLOv2, Faster-RCNN, and YOLOv3, the mAP of pig identification was improved by 2.31%, 1.44%, 1.28%, and 0.61%, respectively. The YOLOv3-SC proposed in this paper can achieve accurate individual detection of pigs. Consequently, this novel proposed model can be employed for the rapid detection of individual pigs on farms, and provides new ideas for individual pig detection.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Changes in Feeding Behavior as Possible Indicators for the Automatic Monitoring of Health Disorders in Dairy Cows;J. Dairy Sci.,2008

2. Hulsen, J., and Scheepens, K. (2006). Pig Signals: Look, Think and Act, China Agricultural Science and Technology Press.

3. Biological basis of the behavior of sick animals;Neurosci. Biobehav. Rev.,1988

4. Validation of a High Frequency Radio Frequency Identification (HF RFID) system for registering feeding patterns of growing-finishing pigs;Comput. Electron. Agric.,2014

5. Monitoring trough visits of growing-finishing pigs with UHF-RFID;Comput. Electron. Agric.,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3