Affiliation:
1. Tianjin Key Laboratory of Modern Engineering Mechanics, Department of Mechanics, Tianjin University, Tianjin 300350, China
Abstract
Monocrystalline silicon (c-Si) is still an important material related to microelectronics/optoelectronics. The nondestructive measurement of the c-Si material and its microstructure is commonly required in scientific research and industrial applications, for which Raman spectroscopy is an indispensable method. However, Raman measurements based on the specific fixed Raman geometry/polarization configuration are limited for the quantified analysis of c-Si performance, which makes it difficult to meet the high-end requirements of advanced silicon-based microelectronics and optoelectronics. Angle-resolved Raman measurements have become a new trend of experimental analysis in the field of materials, physics, mechanics, and optics. In this paper, the characteristics of the angle-resolved polarized Raman scattering of c-Si under the in-axis and off-axis configurations are systematically analyzed. A general theoretical model of the angle-resolved Raman intensity is established, which includes several alterable angle parameters, including the inclination angle, rotation angle of the sample, and polarization directions of the incident laser and scattered light. The diversification of the Raman intensity is given at different angles for various geometries and polarization configurations. The theoretical model is verified and calibrated by typical experiments. In addition, this work provides a reliable basis for the analysis of complex polarized Raman experiments on silicon-based structures.
Funder
National Natural Science Foundation of China
Subject
Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献