Stress Component Decoupling Analysis Based on Large Numerical Aperture Objective Lens, an Impractical Approach

Author:

Chang Ying,Fu Donghui,Sun Mingyuan,He Saisai,Qiu WeiORCID

Abstract

Micro Raman spectroscopy is an effective method to quantitatively analyse the internal stress of semiconductor materials and structures. However, the decoupling analysis of the stress components for {100} monocrystalline silicon (c-Si) remains difficult. In the work outlined, physical and simulation experiments were combined to study the influence of the objective lens numerical aperture (NA) on the Raman stress characterization. The physical experiments and simulation experiments show that the spectral results obtained by using lenses with different NAs can accurately obtain the principal stress sum but cannot decouple the components of the in-plane stress. Even if the spectral resolution of the simulated experiment is ideal (The random errors of the polarization directions of less than ±1° and the systematic random errors of less than ±0.02 cm−1). The analysis based on the theoretical model demonstrates that the proportion of the principal stress sum in the Raman shift obtained in an actual experiment exceeded 98.7%, while the proportion of the principal stress difference part was almost negligible. This result made it difficult to identify the variable effects of different stress states from the experimental results. Further simulation experiments in this work verify that when the principal stress sum was identical, the differences in the Raman shifts caused by different stress states were much smaller than the resolution of the existing Raman microscope system, which was hardly possible to identify in the experimental results. It was proven that decoupling analysis of stress components using the large-NA objective lens lacked actual practicability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3