High-Dose Estradiol-Replacement Therapy Enhances the Renal Vascular Response to Angiotensin II via an AT2-Receptor Dependent Mechanism

Author:

Safari Tahereh1,Nematbakhsh Mehdi234,Evans Roger G.5,Denton Kate M.5

Affiliation:

1. Department of Physiology, Zahedan University of Medical Sciences, Isfahan, Iran

2. Water & Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

3. Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran

4. Isfahan MN Institute of Basic & Applied Sciences Research, Isfahan, Iran

5. Department of Physiology, Monash University, Clayton, VIC, Australia

Abstract

Physiological levels of estrogen appear to enhance angiotensin type 2 receptor- (AT2R-) mediated vasodilatation. However, the effects of supraphysiological levels of estrogen, analogous to those achieved with high-dose estrogen replacement therapy in postmenopausal women, remain unknown. Therefore, we pretreated ovariectomized rats with a relatively high dose of estrogen (0.5 mg/kg/week) for two weeks. Subsequently, renal hemodynamic responses to intravenous angiotensin II (Ang II, 30–300 ng/kg/min) were tested under anesthesia, while renal perfusion pressure was held constant. The role of AT2R was examined by pretreating groups of rats with PD123319 or its vehicle. Renal blood flow (RBF) decreased in a dose-related manner in response to Ang II. Responses to Ang II were enhanced by pretreatment with estradiol. For example, at 300 ng kg−1 min−1, Ang II reduced RBF by45.7±1.9% in estradiol-treated rats but only by27.3±5.1% in vehicle-treated rats. Pretreatment with PD123319 blunted the response of RBF to Ang II in estradiol-treated rats, so that reductions in RBF were similar to those in rats not treated with estradiol. We conclude that supraphysiological levels of estrogen promote AT2R-mediated renal vasoconstriction. This mechanism could potentially contribute to the increased risk of cardiovascular disease associated with hormone replacement therapy using high-dose estrogen.

Funder

Isfahan University of Medical Sciences

Publisher

Hindawi Limited

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3