Stability Analysis of a Model for Foreign Body Fibrotic Reactions

Author:

Ibraguimov A.1,Owens L.2,Su J.2,Tang L.3

Affiliation:

1. Department of Mathematics and Statistics, Texas Tech University, P.O. Box 41042, Lubbock, TX 79409-1042, USA

2. Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019, USA

3. Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA

Abstract

Implanted medical devices often trigger immunological and inflammatory reactions from surrounding tissues. The foreign body-mediated tissue responses may result in varying degrees of fibrotic tissue formation. There is an intensive research interest in the area of wound healing modeling, and quantitative methods are proposed to systematically study the behavior of this complex system of multiple cells, proteins, and enzymes. This paper introduces a kinetics-based model for analyzing reactions of various cells/proteins and biochemical processes as well as their transient behavior during the implant healing in 2-dimensional space. In particular, we provide a detailed modeling study of different roles of macrophages () and their effects on fibrotic reactions. The main mathematical result indicates that the stability of the inflamed steady state depends primarily on the reaction dynamics of the system. However, if the said equilibrium is unstable by its reaction-only system, the spatial diffusion and chemotactic effects can help to stabilize when the model is dominated by classical and regulatory macrophages over the inflammatory macrophages. The mathematical proof and counter examples are given for these conclusions.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3