Adaptive Polymorphic Fusion-Based Fast-Tracking Algorithm in Substations

Author:

Shi Wenbin1ORCID,Lei Jingsheng1,Gan Xingli1ORCID,Yang Zhongguang2ORCID

Affiliation:

1. Zhejiang University of Science and Technology, Hangzhou 310000, China

2. Electric Power Research Institute of State Grid Shanghai Electric Power Company, Shanghai 200051, China

Abstract

Tracking multiple objects in a substation remains a challenging problem since pedestrians often overlap together and are occluded by infrastructures such as high-tension poles. In this paper, we propose an adaptive polymorphic fusion-based fast-tracking algorithm to address the problem. We first leverage the fast segmentation algorithm to obtain the fine masks of pedestrians and then combine the motion and performance information of pedestrians to realize the fast-tracking in substations. Our model is evaluated on the widely used MOT19 dataset and real-substation scenarios. Experimental results demonstrate that our model outperforms state-of-the-art models with a significant improvement in the MOT19 dataset and occlusion cases in substations.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3