Response Characteristics of Looseness-Rubbing Coupling Fault in Rotor-Sliding Bearing System

Author:

Liu Yang1ORCID,Xue Zengyuan1,Jia Lei1,Shi Tuo1,Ma Hui1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819, China

Abstract

For the diagnosis of looseness-rubbing coupling fault of rotor-sliding bearing system caused by bolt looseness fault, the mechanical model and finite element model of dual-disc rotor system with looseness-rubbing coupling fault are established based on the nonlinear finite element method, nonlinear oil film force, looseness stiffness model, and Hertz contact theory. With the augmented Lagrange method, contact constraint conditions are dealt with to ensure that the rotary disk and casing contact with each other meeting boundary penetrating depth within the prescribed tolerance range. And then the dynamics characteristics of the health rotor system supported by sliding bearing are studied. Combined with experimental study and simulation analysis, it is found that the looseness-rubbing coupling fault is often characterized by rubbing fault, the lower part of the time-domain fluctuated shape is denser, while the upper part is relatively loose, and multiple nested half ellipse is shown in orbit diagram. Because of the loosing stiffness and rubbing force, the phenomenon of unstable oil film is depressed. The appearance of the first- and second-order oil film oscillation phenomenon is delayed. It could be used as a theoretical basis for diagnosing looseness-rubbing coupling fault of rotor-sliding bearing system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3